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3 Probability distributions and their stories

We have talked about the three levels of building a model in the biological sciences.

Model 1 A cartoon or verbal phenomenological description of the system of interest.

Model 2 A mathematization of Model 1.

Model 3 A description of what we expect from an experiment, given our model. In the Bayesian
context, this is specification of the likelihood and prior.

We have talked briefly about specifying priors. We endeavor to be uninformative when we
do not know much about model parameters or about the hypothesis in question. We found
in the homework that while we should try to be a uninformative as possible (using maximum
entropy ideas), we can be a bit sloppy with our prior definitions, provided we have many data
so that the likelihood can overcome any prior sloppiness.

To specify a likelihood, we need to be careful, as this is very much at the heart of our
model. Specifying the likelihood amounts to choosing a probability distribution that describes
how the data will look under your model. In many cases, you need to derive the likelihood
(or even numerically compute it when it cannot be written in closed form). In many practical
cases, though, the choice of likelihood is among standard probability distributions. These
distributions all have “stories” associated with them. If your data and model match the story
of a distribution, you know that this is the distribution to choose for your likelihood.

3.1 Review on probability distributions

Before we begin talking about distributions, let’s remind ourselves what probability distribu-
tions are. We cut some corners in our definitions here, but these definitions are functional for
most of our data analysis purposes.

A probability mass function (PMF), P (x), describes the probability of a discrete variable
obtaining value x. The variable x takes on discrete values, so the normalization condition
is

X

x

P (x) = 1. (3.1)

A probability distribution function (PDF), which we shall also call P (x), is defined
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such that the probability that a continuous variable x is a  x  b is
Z

b

a

dxP (x). (3.2)

3.1.1 Moments

PMFs and PDFs have moments. The way they are defined can vary, but we will define the
nth moment for a PMF as

hxni =
X

i

xn

i

P (x
i

), (3.3)

and for a PDF as

hxni =
Z

dx xnP (x). (3.4)

These moments are often used to compute summary statistics.

mean = hxi (3.5)

variance =
⌦
x2

↵
� hxi2 =

⌦
(x� hxi)2

↵
(3.6)

skew =
h(x� hxi)3i
h(x� hxi)2i

3

2

(3.7)

Pearson kurtosis =
h(x� hxi)4i
h(x� hxi)2i2

(3.8)

Fisher kurtosis =
h(x� hxi)4i
h(x� hxi)2i2

� 3. (3.9)

We will present PMFs and PDFs for distributions below. We only show the univariate
forms; the multivariate version are easily derived or looked up.

3.1.2 Sampling

Given that we know a probability distribution, we can take samples out of it. This means
that we can randomly draw numbers and the probability that we draw a certain number x is
proportional to the PMF or PDF, P (x). As we will soon see, sampling out of a distribution
is often easier than computing the distribution over a range of values because many of those
values are zero.
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3.2 Discrete distributions and their stories

3.2.1 Bernoulli

Story. A single trial with either a success (x = 1) or failure (x = 0) is performed. The
Bernoulli distribution defines the probability of getting each outcome.

Parameter. The Bernoulli distribution is parametrized by a single value, p, the probability
that the trial is successful. These trials are called Bernoulli trials.

Example. Check to see if a given bacteria is competent, given that it has probability p of
being competent.

Probability mass function.

P (x; p) =

8
><

>:

1� p x = 0

p x = 1

0 otherwise.

(3.10)

3.2.2 Geometric

Story. We perform a series of Bernoulli trials until we get a success. We have k failures before
the success.

Parameter. The Geometric distribution is parametrized by a single value, p, the probability
that the Bernoulli trial is successful.

Example. Consider actin polymerization. At each time step, an actin monomer may add to
the filament (“failure”), or an actin monomer may fall o↵ (“success”) with (usually very low)
probability p. The length of actin filaments are geometrically distributed.

Probability mass function.

P (k; p) = (1� p)kp. (3.11)

The Geometric distribution is only defined for non-negative integer k.
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3.2.3 Negative binomial

Story. We perform a series of Bernoulli trials until we get r successes. The number of failures,
n, before we get r successes is negative binomially distributed.

Parameters. There are two parameters: the probability p of success for each Bernoulli trial,
and the desired number of successes, r.

Example. Bursty gene expression can give mRNA count distributions that are negative bino-
mially distributed. Here, “success” is that a burst in gene expression stops. So, the parameter
p is related to the length of a burst in expression (lower p means a longer burst). The parameter
r is related to the frequency of the bursts. If multiple bursts are possible within the lifetime of
mRNA, then r > 1. Then, the number of “failures” is the number of mRNA transcripts that
are made in the characteristic lifetime of mRNA.

Probability mass function.

P (n; r, p) =

✓
n+ r � 1
r � 1

◆
pr(1� p)n. (3.12)

Here, we use a combinatorial notation;
✓
n+ r � 1
r � 1

◆
=

(n+ r � 1)!

(r � 1)!n!
. (3.13)

Note that if r = 1, this distribution reduces to the Geometric distribution.

3.2.4 Binomial

Story. We perform n Bernoulli trials. The number of successes, k, is binomially distributed.

Parameters. There are two parameters: the probability p of success for each Bernoulli trial,
and the number of trials, n.

Example. Distribution of plasmids between daughter cells in cell division. Each of the n
plasmids as a chance p of being in daughter cell 1 (“success”). The number of plasmids, k, in
daughter cell 1 is binomially distributed.
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Probability mass function.

P (k;n, p) =

✓
n
k

◆
pk(1� p)n�k. (3.14)

3.2.5 Poisson

Story. Rare events occur with a rate � per unit time. There is no “memory” of previous
events; i.e., that rate is independent of time. There are k event that occur in unit time.

Parameter. The single parameter is the rate � of the rare events occurring.

Example. The number of mutations in a strand of DNA per unit length (since mutations are
rare) are Poisson distributed.

Probability mass function.

P (k;�) =
�k

k!
e��. (3.15)

Note. The Poisson distribution is a limit of the binomial distribution in which the number
of trials goes to infinity, but the expected number of successes, np, stays fixed. Thus,

P
Poisson

(k;�) ⇡ P
Binomial

(k;n, p), (3.16)

with � = np. Considering the biological example of mutations, this is binomially distributed:
There are n bases, each with a probability p of mutation, so the number of mutations, k is
binomially distributed. Since p is small, it is approximately Poisson distributed.

3.2.6 Hypergeometric

Story. Consider an urn with w white balls and b black balls. Draw n balls from this urn
without replacement. The number white balls drawn, k is hypergeometrically distributed.

Parameters. There are three parameters: the number of draws n, the number of white balls
w, and the number of black balls b.
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Example. There are N finches on an island, and n
t

of them are tagged. You capture n
finches. The number of tagged finches k is hypergeometrically distributed, P (k;n

t

, N � n
t

, n),
as defined below.

Probability mass function.

P (k;w, b, n) =

✓
w
k

◆✓
b

n� k

◆

✓
w + b
n

◆ . (3.17)

Note. This distribution is analogous to the Binomial distribution, except that the Binomial
distribution describes draws from an urn with replacement. In the analogy, p = w/(w + b).

3.3 Continuous distributions and their stories

3.3.1 Uniform

Story. Any outcome in a given range has equal probability.

Parameters. The Uniform distribution is not defined on an infinite or semi-infinite domain,
so bounds, x

min

and x
max

are necessary parameters.

Example. Anything in which all possibilities are equally likely.

Probability density function.

P (x; x
min

, x
max

) =

(
1

x

max

�x

min

x
min

 x  x
max

0 otherwise.
(3.18)

3.3.2 Gaussian (a.k.a. Normal)

Story. Any quantity that emerges from a large number of subprocesses tends to be Gaussian
distributed provided none of the subprocesses is very broadly distributed.
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Parameters. The Gaussian distribution has two parameters, the mean µ, which determines
the location of its peak, and the standard deviation �, which is strictly positive (the � ! 0
limit defines a Dirac delta function) and determines the width of the peak.

Example. We measure the length of many C. elegans eggs. The lengths are Gaussian dis-
tributed.

Probability density function.

P (x;µ, �) =
1p
2⇡�2

e�(x�µ)

2

/2�

2

. (3.19)

Note. This is a limiting distribution in the sense of the central limit theorem, but also in
that many distributions have a Gaussian distribution as a limit. This is seen by formally taking
limits of, e.g., the Gamma, Student-t, Binomial distributions, which allows direct comparison
of parameters.

3.3.3 Log-normal

Story. If ln x is Gaussian distributed, x is log-normally distributed.

Parameters. As for a Gaussian, there are two parameters, the mean logarithm, lnµ, and the
variance �2.

Example. A measure of fold change in gene expression can be log-normally distributed.

Probability density function.

P (x;µ, �) =
1

x
p
2⇡�2

e�(lnx�lnµ)

2

/2�

2

. (3.20)

3.3.4 Von Mises

Story. Gaussian, except on a periodic domain.
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Parameters. As for a Gaussian, with µ being the location of the peak, and � being analogous
to the variance.

Example. Repeated measurements on a periodic domain, e.g., the location of an ingression
along the azimuthal angle of a developing embryo.

Probability density function.

P (✓;µ, �) =
1

2⇡I
0

(�)
e� cos(✓�µ), (3.21)

where I
0

(�) is a modified Bessel function of the first kind.

3.3.5 Chi-square

Story. If X
1

, X
2

, . . ., X
n

are Gaussian distributed, X2

1

+X2

2

+ · · ·+X2

n

is �2-distributed.

Parameters. There is only one parameter, the degrees of freedom n.

Probability density function.

P (x;n) ⌘ �2

n

(x;n) =
1

2n/2�
�
n

2

� xn
2

�1 e�x/2. (3.22)

3.3.6 Student -t/Cauchy

Story. We get this distribution whenever we marginalize an unknown � out of a Gaussian
distribution with a Je↵reys distribution for �.

Parameters. The Student-t distribution is peaked, and its peak is located at m. The peak’s
width is dictated by parameter s. Finally, we define the “degrees of freedom” as n.

Example. The story says it all!
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Probability density function.

P (x;m, s, n) =
�
�
n

2

�

�
�
n+1

2

�
p
⇡ns2

⇣
1 + (x�m)

2

ns

2

⌘n+1

2

. (3.23)

Note. For n ! 1, we get a Gaussian distribution. When n = 1, we get the Cauchy
distribution,

P (x;m, s) =

"
⇡s

✓
x�m

s

◆
2

#�1

. (3.24)

3.3.7 Aside: Poisson processes

A Poisson process is a sequence of “arrivals” or events at di↵erent points on a timeline such
that the number of point in a particular interval are Poisson distributed. This means that the
amount of time between any two arrivals is independent of all other inter-arrival times.

3.3.8 Exponential

Story. This is the waiting time for an arrival from a Poisson process. I.e., the inter-arrival
time of a Poisson process is exponentially distributed.

Parameter. The single parameter is the average arrival rate, r.

Example. The time between conformational switches in a protein is exponentially distributed
(under simple mass action kinetics).

Probability density function.

P (x; r) = re�rx. (3.25)

Note. The Exponential distribution is the continuous analog of the Geometric distribution.
The “rate” in the Exponential distribution is analogous to the probability of success of the
Bernoulli trial.
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3.3.9 Gamma

Story. The amount of time we have to wait for a arrivals of a Poisson process. More concretely,
if we have events, X

1

, X
2

, . . ., X
a

that are exponentially distributed, X
1

+ X
2

+ · · · + X
a

is
gamma distributed.

Parameters. The number of arrivals, a, and the rate of arrivals, r.

Example. Any multistep process where each step happens at the same rate. This is common
in molecular rearrangements, and we will use it in class to describe the nature of processes
triggering microtubule catastrophe.

Probability density function.

P (x; r) =
1

�(a)

(rx)a

x
e�rx, (3.26)

where �(a) is the gamma function.

Note. The Gamma distribution is the continuous analog of the Negative Binomial distribu-
tion.

3.3.10 Weibull

Story. Distribution of x = y� if y is exponentially distributed. For � > 1, the longer we have
waited, the more likely the event is to come, and vice versa for � < 1.

Parameters. There are two parameters, both strictly positive: the shape parameter �, which
dictates the shape of the curve, and the scale parameter �, which dictates the rate of arrivals
of the event.

Example. This is a model for aging. The longer an organism lives, the more likely it is to
die.
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Probability density function.

P (x;�, �) =
�

�

⇣x
�

⌘
��1

e�(x/�)

�
. (3.27)
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