
BE/Bi 103: Data Analysis in the
Biological Sciences

Justin Bois

Caltech

Fall, 2015



5 The theory of Markov chain Monte Carlo

We have already begun using Markov chain Monte Carlo (MCMC) and have found it to be
a powerful tool for computing properties of the posterior distribution. Today, we will discuss
some of the basic theory behind MCMC to get an understanding of how and why it works.

5.1 Why MCMC?

When doing Bayesian analysis, our goal is very often to compute a posterior distribution.
For most inference problems, the posterior itself is the holy grail. However, just having an
analytical expression for the posterior is of little use if we cannot understand and properties
about it. Importantly, we often want to marginalized the posterior; that is, we want to integrate
over parameters we are not interested in and get simpler distributions for those we are. This
is often necessary to understand all but the simplest models. Doing these marginalizations
requires what David MacKay calls “macho integration,” which is often time impossible to do
analytically.

MCMC allows use to sample out of an arbitrary probability distribution, which includes
pretty much any posterior we could write down.9 We can trivially perform marginalizations
from these samples and can generate histograms to plot various marginalizations. All we have
to do is specify the distribution we want to sample from, and a good MCMC algorithm will
take care of the rest.

Generating samples that actually come from the probability distribution of interest is not
a trivial matter. We will discuss how this is accomplished through MCMC.

5.2 The basic idea behind MCMC

We often draw independent samples from a target distribution. For example, we could use
np.random.uniform(0, 1, 100) to draw 100 independent samples from a uniform distribution
on the domain [0, 1]. Generating independent samples for complicated target distributions is
di�cult.

But, the samples need not be independent! Instead, we only need that the samples be
generated from a process that generates samples from the target distribution in the correct
proportions. In the case of the parameter estimation problem, this distribution is the posterior

9Well, not any. For some cases, we may not be able to make a transition kernel that satisfies the necessary
properties, which I describe in the following pages.
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distribution for model A parametrized by a, P (a | D,A, I). For notational simplicity, since
we know we are always talking about a posterior distribution, we will use P (a) for shorthand
notation.

The approach of MCMC is to take random walks in parameter space such that the proba-
bility that a walker arrives at point a is proportional to P (a). This is the main concept and is
important enough to repeat.

The approach of MCMC is to take random walks in parameter space such that the
probability that a walker arrives at point a is proportional to P (a).

If we can achieve such a walk, we can just take the walker positions as samples from the
distributions. To implement this random walk, we define a transition kernel, T (a

i+1

| a
i

),
the probability of a walker stepping from position a

i

in parameter space to position a
i+1

. The
transition kernel defines a Markov chain, which you can think of as a random walker whose
next step depends only on where the walker is right now; i.e., it has no memory.

The condition that the probability of arrival at point a
i+1

is proportional to P (a
i+1

) may
be stated as

P (a
i+1

) =

Z
da

i

T (a
i+1

| a
i

)P (a
i

). (5.1)

When this relation holds, it is said that the target distribution is an invariant distribution or
stationary distribution of the transition kernel. When this invariant distribution is unique,
it is called a limiting distribution. We want to choose our transition kernel T (a

i+1

| a
i

) such
that P (a) is limiting. This is the case is equation (5.1) holds and the chain is ergodic. An
ergodic Markov chain has the following properties:

1. It is aperiodic. A periodic Markov chain can only return to a given point in parameter
space after k, 2k, 3k, . . . steps, where k is the period. An aperiodic chain is not periodic.

2. It is irreducible, which means that any point in parameter space is accessible to the
walker from any other.

3. It is positive recurrent, which means that the walker will surely come revisit any point
in parameter space in a finite number of steps.

So, if our transition kernel satisfies this checklist and equation (5.1), it will eventually
sample the posterior distribution. We will discuss how to come up with such a transition kernel
in a moment, for for now we focus on the important concept of “eventually” in the preceding
sentence.
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5.3 Burn-in

Imagine for a moment that we devised a transition kernel that satisfies the above properties.
Say we start a walker at position a

0

in parameter space and it starts walking according to the
transition kernel. It may not reach a place in parameter space where it is sampling from the
limiting distribution. This is because the invariance condition, equation (5.1), does not hold
for every set of parameter values. Once the walker reaches the limiting distribution, it is indeed
sampling from it. So, we need to let the walker walk for a while without keeping track of the
samples so that it can arrive at the limiting distribution. This is called burn-in.

There is no general way to tell if a walker has reached the limiting distribution, so we do not
know how many burn-in steps are necessary. There are several heuristics. For example, Andrew
Gelman and coauthors (in their famous book, Bayesian Data Analysis) proposed generating
several burn-in chains and computing the R statistic,

R =
variance between the chains

mean variance within the chains
. (5.2)

Limiting chains have R ⇡ 1, so you can use this as a metric for having achieved stationarity.

5.4 Generating a transition kernel: The Metropolis-Hastings algo-
rithm

The Metropolis-Hastings algorithm covers a widely used class of algorithms for MCMC
sampling. I will first state the algorithm here, and then we will show that it satisfies the
necessary conditions for the walkers to be sampling out of the target posterior distribution.

5.4.1 The algorithm/kernel

Say our walker is at position a
i

in parameter space.

1. We randomly choose a candidate position a0 to step next from an arbitrary proposal
distribution K(a0 | a

i

).

2. We compute the Metropolis ratio,

r =
P (a0)K(a

i

| a0)

P (a
i

)K(a0 | a
i

)
. (5.3)
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3. If r � 1, accept the step and set a
i+1

= a0. Otherwise, accept the step with probability
r. If we do reject the step, set a

i+1

= a
i

.

The last two steps are used to define the transition kernel T (a
i+1

| a
i

). We can define the
acceptance probability of the proposal step as

↵(a
i+1

| a
i

) = min(1, r) = min

✓
1,

P (a
i+1

)K(a
i

| a
i+1

)

P (a
i

)K(a
i+1

| a
i

)

◆
. (5.4)

Then, the transition kernel is

T (a
i+1

| a
i

) = ↵(a
i+1

| a
i

)K(a
i+1

| a
i

). (5.5)

5.4.2 Detailed balance

This algorithm seems kind of nuts! How on earth does this work? To investigate this, we
consider the joint probability, P (a

i+1

, a
i

), that the walker is at a
i

and a
i+1

at sequential steps.
We can write this in terms of the transition kernel,

P (a
i+1

, a
i

) = P (a
i

)T (a
i+1

| a
i

)

= P (a
i

)↵(a
i+1

| a)K(a
i+1

| a
i

)

= P (a
i

)K(a
i+1

| a) min

✓
1,

P (a
i+1

)K(a
i

| a
i+1

)

P (a
i

)K(a
i+1

| a
i

)

◆

= min [P (a
i

)K(a
i+1

| a
i

), P (a
i+1

)K(a
i

| a
i+1

)]

= P (a
i+1

)K(a
i

| a
i+1

) min

✓
1,

P (a
i

)K(a
i+1

| a
i

)

P (a
i+1

)K(a
i

| a
i+1

)

◆

= P (a
i+1

)↵(a
i

| a
i+1

)K(a
i

| a
i+1

)

= P (a
i+1

)T (a
i

| a
i+1

). (5.6)

Thus, we have

P (a
i

)T (a
i+1

| a
i

) = P (a
i+1

)T (a
i

| a
i+1

). (5.7)

This says that the rate of transition from a
i

to a
i+1

is equal to the rate of transition from a
i+1

to a
i

. In this case, the transition kernel is said to satisfy detailed balance.

38



Any transition kernel that satisfies detailed balance has P (a) as an invariant distribution.
This is easily shown.

Z
da

i

P (a
i

)T (a
i+1

| a
i

) =

Z
da

i

P (a
i+1

)T (a
i

| a
i+1

)

= P (a
i+1

)

Z
da

i

T (a
i

| a
i+1

)

�

= P (a
i+1

), (5.8)

since the bracketed term is unity because the transition kernel is a probability.

Note that all transition kernels that satisfy detailed balance have an invariant distribution.
(If the chain is ergodic, this is a limiting distribution.) But not all kernels that have an
invariant distribution satisfy detailed balance. So, detailed balance is a su�cient condition for
a transition kernel having an invariance distribution.

5.4.3 Choosing the transition kernel

There is an art to choosing the transition kernel. The original Metropolis algorithm (1953),
took K(a

i+1

| a
i

) = 1. Gibbs sampling, which is popular, though we will not go into the details,
is a special case of a Metropolis-Hastings sampler, as is the No U-turn sampler (NUTS). These
both result in significant performance improvements over important subclasses of problems.
The sampler employed by emcee, the a�ne invariant ensemble sampler (Goodman and Weare,
J. Comp. Sci., 5, 65–80, 2000), utilizes many walkers walking at the same time, sharing
information between them. It is technically not a Metropolis-Hastings sampler, but many of
the ideas presented in this lecture there apply for ensuring that the sampler is indeed sampling
the appropriate posterior distribution.
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