BE/Bi 103: Data Analysis in the Biological Sciences

Justin Bois

Caltech
Fall, 2015

6 Parellel tempering MCMC

In this lecture, we will discuss parallel tempering Markov chain Monte Carlo (PTMCMC). This technique allows for effective sampling of multimodal distributions and it avoids getting trapped on local maxima of the posterior.

6.1 The basic idea

Recall that the posterior distribution we seek to sample in the model selection problem is

$$
\begin{equation*}
P\left(\mathbf{a}_{i} \mid D, M_{i}, I\right) \propto P\left(\mathbf{a}_{i} \mid M_{i}, I\right) P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right) \tag{6.1}
\end{equation*}
$$

Now, we define

$$
\begin{align*}
\pi\left(\mathbf{a}_{i} \mid D, M_{i}, \beta, I\right) & =P\left(\mathbf{a}_{i} \mid M_{i}, I\right)\left[P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right]^{\beta} \tag{6.2}\\
& =P\left(\mathbf{a}_{i} \mid M_{i}, I\right) \exp \left\{\beta \ln P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right\} \tag{6.3}
\end{align*}
$$

Here, $\beta \in(0,1]$ is an "inverse temperature" in analogy to statistical mechanics, where $-\ln P(D \mid$ $\left.\mathbf{a}_{i}, M_{i}, I\right)$ is an energy (so $P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)$ is analogous to a partition function).

If β is close to zero (the "high temperature" limit), we are just sampling the prior. If $\beta=1$, we are sampling our target posterior, the so-called "cold distribution." So, lowering β has the effect of flattening the posterior distribution. Therefore, walkers at higher temperature (lower β) are not trapped at local maxima. By occasionally swapping walkers from adjacent temperatures, we can effectively sample a broader swath of parameter space.

In practice, we choose a set of β 's with $\beta=\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{m}\right\}$, with $\beta_{i+1}<\beta_{i}$ and $\beta_{0}=1$.
propose a swap roughly every n_{s} steps. To do this, we choose a uniform random number on $[0,1]$ every iteration and propose a step when this random number is less than $1 / n_{s}$. When we do propose a swap, we randomly pick a temperature β_{j} from $\left\{\beta_{1}, \beta_{2}, \ldots \beta_{m}\right\}$. We then compute

$$
\begin{equation*}
r=\min \left(1, \frac{\pi\left(\mathbf{a}_{i, j} \mid D, M_{i}, \beta_{j-1}, I\right)}{\pi\left(\mathbf{a}_{i, j-1} \mid D, M_{i}, \beta_{j-1}, I\right)} \frac{\pi\left(\mathbf{a}_{i, j} \mid D, M_{i}, \beta_{j}, I\right)}{\pi\left(\mathbf{a}_{i, j-1} \mid D, M_{i}, \beta_{j}, I\right)}\right) . \tag{6.4}
\end{equation*}
$$

We draw another uniform random number on $[0,1]$ and accept the swap is that number if less than r.

This useful technique is implement in emcee.PTSampler, which we will use in the next tutorial. Conveniently, it automatically chooses reasonable values of β and swapping rate, though you can choose these as well.

6.2 Model selection with PTMCMC

We will now do some clever ticks to see how we can use PTMCMC to do model selection without making the approximations we did earlier. Recall the statement of Bayes's theorem for the model selection problem, equation (4.3).

$$
\begin{equation*}
P\left(M_{i} \mid D, I\right)=\frac{P\left(D \mid M_{i}, I\right) P\left(M_{i} \mid I\right)}{P(D \mid I)} . \tag{6.5}
\end{equation*}
$$

The likelihood is given by the evidence from the parameter estimation problem, as we derived in equation (4.5), to give

$$
\begin{equation*}
P\left(M_{i} \mid D, I\right)=\frac{P\left(M_{i} \mid I\right)}{P(D \mid I)}\left[\int \mathrm{d} \mathbf{a}_{i} P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right) P\left(\mathbf{a}_{i} \mid M_{i}, I\right)\right] \tag{6.6}
\end{equation*}
$$

Now, we define a partition function

$$
\begin{equation*}
Z_{i}(\beta)=\int \mathrm{d} \mathbf{a}_{i} P\left(\mathbf{a}_{i} \mid M_{i}, I\right)\left[P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right]^{\beta} \tag{6.7}
\end{equation*}
$$

Our goal is to compute $Z_{i}(1)$, since this is exactly the integral in brackets in equation (6.6).
Now, we're going to do a usual trick in statistical mechanics: we will differentiate the log of the partition function (analogous to the derivative of a free energy).

$$
\begin{align*}
\frac{\partial}{\partial \beta} \ln Z_{i}(\beta) & =\frac{1}{Z_{i}(\beta)} \frac{\partial Z_{i}}{\partial \beta} \\
& =\frac{1}{Z_{i}(\beta)} \int \mathrm{d} \mathbf{a}_{i} \frac{\partial}{\partial \beta} \exp \left\{\ln P\left(\mathbf{a}_{i} \mid M_{i}, I\right)+\beta \ln P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right\} \\
& =\frac{1}{Z_{i}(\beta)} \int \mathrm{d} \mathbf{a}_{i} \ln P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right) \exp \left\{\ln P\left(\mathbf{a}_{i} \mid M_{i}, I\right)+\beta \ln P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right\} \\
& =\frac{1}{Z_{i}(\beta)} \int \mathrm{d} \mathbf{a}_{i} \ln P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right) P\left(\mathbf{a}_{i} \mid M_{i}, I\right)\left[P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right]^{\beta} \\
& =\left\langle\ln P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right\rangle_{\beta} \tag{6.8}
\end{align*}
$$

where the averaging is done over the distribution $\pi\left(\mathbf{a}_{i} \mid D, M_{i}, \beta, I\right)$, and the subscript β indicates that the averaging is done for a specific value of β. We can integrate both sizes of this equation to give

$$
\begin{equation*}
\int_{0}^{1} \mathrm{~d} \beta \frac{\partial}{\partial \beta} \ln Z_{i}(\beta)=\ln Z_{i}(1)-\ln Z_{i}(0)=\int_{0}^{1} \mathrm{~d} \beta\left\langle\ln P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right\rangle_{\beta} . \tag{6.9}
\end{equation*}
$$

Now, if the prior is normalized, as it should be,

$$
\begin{equation*}
Z_{i}(0)=\int \mathrm{d} \mathbf{a}_{i} P\left(\mathbf{a}_{i} \mid M_{i}, I\right)=1 \tag{6.10}
\end{equation*}
$$

which means $\ln Z_{i}(0)=0$. Thus, we get

$$
\begin{equation*}
\ln Z_{i}(1)=\int \mathrm{d} \mathbf{a}_{i} P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right) P\left(\mathbf{a}_{i} \mid M_{i}, I\right)=\int_{0}^{1} \mathrm{~d} \beta\left\langle\ln P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right\rangle_{\beta} \tag{6.11}
\end{equation*}
$$

Fortunately, we have done MCMC, so we can easily compute the integrand for each β from our samples.

$$
\begin{equation*}
\left\langle\ln P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right\rangle_{\beta}=\frac{1}{n_{\text {samples }}} \sum_{\text {samples }} \ln P\left(D \mid \mathbf{a}_{i}, M_{i}, \beta, I\right) . \tag{6.12}
\end{equation*}
$$

Since we had to compute the log likelihood for every step, we have all we need. We then simple perform numerical quadrature across the values of β that we sampled to get the integral. We therefore can compute the odds ratio of two models M_{i} and M_{j} as

$$
\begin{equation*}
O_{i j}=\frac{P\left(M_{i} \mid I\right)}{P\left(M_{j} \mid I\right)} \frac{Z_{i}(1)}{Z_{j}(1)}=\frac{P\left(M_{i} \mid I\right)}{P\left(M_{j} \mid I\right)} \exp \left\{\frac{\int_{0}^{1} \mathrm{~d} \beta\left\langle\ln P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right)\right\rangle_{\beta}}{\int_{0}^{1} \mathrm{~d} \beta\left\langle\ln P\left(D \mid \mathbf{a}_{j}, M_{j}, I\right)\right\rangle_{\beta}}\right\} \tag{6.13}
\end{equation*}
$$

where the last ratio is via numerical quadrature on results computed directly from our PTMCMC traces using equation (6.12). We can get $\ln Z_{i}(1)$ using the built-in thermodynamic_integration_log_evidence() method of an emcee.PTSampler.

