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6 Parellel tempering MCMC

In this lecture, we will discuss parallel tempering Markov chain Monte Carlo (PTMCMC).
This technique allows for e↵ective sampling of multimodal distributions and it avoids getting
trapped on local maxima of the posterior.

6.1 The basic idea

Recall that the posterior distribution we seek to sample in the model selection problem is

P (a
i

| D,M
i

, I) / P (a
i

| M
i

, I)P (D | a
i

,M
i

, I). (6.1)

Now, we define

⇡(a
i

| D,M
i

, �, I) = P (a
i

| M
i

, I) [P (D | a
i

,M
i

, I)]� (6.2)

= P (a
i

| M
i

, I) exp {� lnP (D | a
i

,M
i

, I)} . (6.3)

Here, � 2 (0, 1] is an “inverse temperature” in analogy to statistical mechanics, where� lnP (D |
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, I) is analogous to a partition function).

If � is close to zero (the “high temperature” limit), we are just sampling the prior. If
� = 1, we are sampling our target posterior, the so-called “cold distribution.” So, lowering �
has the e↵ect of flattening the posterior distribution. Therefore, walkers at higher temperature
(lower �) are not trapped at local maxima. By occasionally swapping walkers from adjacent
temperatures, we can e↵ectively sample a broader swath of parameter space.
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We draw another uniform random number on [0, 1] and accept the swap is that number if less
than r.

This useful technique is implement in emcee.PTSampler, which we will use in the next
tutorial. Conveniently, it automatically chooses reasonable values of � and swapping rate,
though you can choose these as well.
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6.2 Model selection with PTMCMC

We will now do some clever ticks to see how we can use PTMCMC to do model selection
without making the approximations we did earlier. Recall the statement of Bayes’s theorem
for the model selection problem, equation (4.3).

P (M
i

| D, I) =
P (D | M

i

, I)P (M
i

| I)
P (D | I) . (6.5)

The likelihood is given by the evidence from the parameter estimation problem, as we derived
in equation (4.5), to give
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Now, we define a partition function
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Our goal is to compute Z
i

(1), since this is exactly the integral in brackets in equation (6.6).

Now, we’re going to do a usual trick in statistical mechanics: we will di↵erentiate the log
of the partition function (analogous to the derivative of a free energy).
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where the averaging is done over the distribution ⇡(a
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, �, I), and the subscript �
indicates that the averaging is done for a specific value of �. We can integrate both sizes of
this equation to give
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Now, if the prior is normalized, as it should be,
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Fortunately, we have done MCMC, so we can easily compute the integrand for each � from our
samples.
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Since we had to compute the log likelihood for every step, we have all we need. We then simple
perform numerical quadrature across the values of � that we sampled to get the integral. We
therefore can compute the odds ratio of two models M
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j

as

O
ij

=
P (M

i

| I)
P (M

j

| I)
Z

i

(1)

Z
j

(1)
=

P (M
i

| I)
P (M

j

| I) exp

(R
1

0

d� hlnP (D | a
i

,M
i

, I)i
�R

1

0

d� hlnP (D | a
j

,M
j

, I)i
�

)
, (6.13)

where the last ratio is via numerical quadrature on results computed directly from our PTM-
CMC traces using equation (6.12). We can get lnZ

i

(1) using the built-in
thermodynamic_integration_log_evidence() method of an emcee.PTSampler.
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