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8 Hierarchical models

In this lecture, we will investigate hierarchical models, in which some model parameters are
dependent on others in specific ways. This is best learned by example.

8.1 A hierarchical model example

In Tutorial 3b, we studied reversals under exposure to blue light in C. elegans with Channel-
rhodopsin in two di↵erent neurons. Let’s consider one of the strains which contains a Chan-
nelrhodopsin in the ASH sensory neuron. We found that 9 out of 35 worms reversed under
exposure to blue light. We used this measurement to estimate the probability p of reversal.
Specifically, we found that the posterior probability of reversal given r our of n trials showed
reversals was10

P (p | r, n, I) =

8
<

:

(n+ 1)!

(n� r)!r!
pr(1� p)n�r 0  p  1

0 otherwise.

(8.1)

This posterior assumed a uniform prior P (p | I) on 0  p  1, and a binomial likelihood,
P (r | n, p, I).

Next year, we will do the experiment again. Actually, we could image doing the experiment
over and over again, each time getting a value of r and n. Conditions may change from
experiment to experiment. For example, we may have di↵erent microscope set-ups, slight
di↵erences in the strain of worms we’re using, etc. We are left with some choices on how to
model the data.

8.1.1 Pooled data: identical parameters

We could pool all of the data together. In other words, let’s say we measure r
1

out of n
1

reversals in the first set of experiments, r
2

out of n
2

reversals in the second set, etc., up to k
total experiments. We could pool all of the data together to get

r =
kX

i=1

r
i

out of n =
kX

i=1

n
i

reversals. (8.2)

10In Tutorial 3b, we used nr for the number of reversals. We use r here because we will have some more
subscripts and we want to keep notation clean.
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We then compute our posterior as in equation (8.1). Here, the assumption is that the result
in each experiment are governed by identical parameters. That is to say that we assume
p
1

= p
2

= · · · = p
k

= p.

This is similar to what we did in section 1.9, in which we looked at how a single hypothesis
(or parameter value) is informed by more data.

8.1.2 Independent parameters

As an alternative, we could instead say that the parameters in each experiment are totally
independent of each other. In this case, we assume that p

1

, p
2

, . . ., p
k

are all independent of
each other. Thus, the posterior probability is

P (p | r,n, I) =
kY

i=1

(n
i

+ 1)!

(n
i

� r
i

)!r
i

!
pri
i

(1� p
i

)ni�ri , (8.3)

where p = {p
1

, p
2

, . . . p
k

}, with n and r similarly defined, and the posterior is understood to be
zero if any the p

i

’s fall our of the interval [0, 1].

When we make this assumption, we often report a value of p that is given by the mean of
the p

i

’s with some error bar.

8.1.3 Best of both worlds: a hierarchical model

Each of these extremes have their advantages. We are often trying to estimate a parameter
that is more universal that out experiments, e.g., something that describes worms with Chan-
nelrhodopsin in the ASH neuron generally. So, pooling the experiments makes sense. On the
other hand, we have reason to assume that there is going to be a di↵erent value of p in di↵erent
experiments, as biological systems are highly variable, not to mention measurement variations.
So, how can we capture both of these e↵ects.

We can consider a model in which there is a “master” reversal probability, which we’ll call q
to avoid too many p’s, and the values of p

i

may vary from this p according to some probability
distribution, P (p

i

| q, I). So now, we have parameters p
1

, p
2

, . . . , p
k

and q. So, the posterior
can be written using Bayes’s theorem,

P (q,p | r,n, I) = P (r,n | q,p, I)P (q,p | I)
P (n, r | I) . (8.4)

Note, though, that the observed values of r do not depend directly on q, only on p. In other
words, they only depend indirectly on q. So, we can write P (r,n | q,p, I) = P (r,n | p, I).
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Thus, we have

P (q,p | r,n, I) = P (r,n | p, I)P (q,p | I)
P (n, r | I) . (8.5)

Next, we can rewrite the prior using the definition of conditional probability.

P (q,p | I) = P (p | q, I)P (q | I). (8.6)

Substituting this back into our expression for the posterior, we have

P (q,p | r,n, I) = P (r,n | p, I)P (p | q, I)P (q | I)
P (n, r | I) . (8.7)

Now, if we read o↵ the numerator of this equation, we see a chain of dependencies. The
experimental results r depend on parameters p. Parameters p depend on hyperparameter q.
Hyperparameter q then has some prior distribution. Any model that can be written as a chain
of dependencies like this is called a hierarchical model, and the parameters that do not
directly influence the data are called hyperparameters.

So, the hierarchical model captures both the experiment-to-experiment variability, as well
as the master regulator of outcomes. Note that the product P (p | q, I)P (q | I) comprises the
prior, and it is therefore independent of the data.

8.2 Exchangeability

The conditional probability, P (p | q, I), can take any reasonable form. In the case where
we have no reason to believe that we can distinguish any one p

i

from another prior to the
experiment, then the label “i” applied to the experiment may be exchanged with the label of
any other experiment. I.e., P (p

1

, p
2

, . . . , p
k

| q, I) is invariant to permutations of the indices.
Parameters behaving this way are said to be exchangeable. A common (simple) exchangeable
distribution is

P (p | q, I) =
kY

i=1

P (p
i

| q, I), (8.8)

which means that each of the parameters is an independent sample out of a distribution P (p
i

|
q), which we often take to be the same for all i. This is reasonable to do in the worm reversal
example.
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8.3 Choice of the conditional distribution/prior

We need to specify out prior, which for this hierarchical model means that we have to specify
the conditional distribution, P (p

i

| q, I), as well as P (q | I) For the latter, we will take it to be
uniform on [0, 1]. For the conditional distribution, we will assume it is beta-distributed, which
is defined on the interval [0, 1] and can be peaked. The beta distribution can be written as

P (p | ↵, �) = �(↵ + �)

�(↵)�(�)
p↵�1(1� p)��1, (8.9)

where it is parametrized by positive constants ↵ and �. If ↵ and � are both greater than unity,
the distribution is peaked, and the mode is

p⇤ ⌘ ! =
↵� 1

↵ + � � 2
. (8.10)

The “concentration,”  = ↵ + �, of the distribution describes its spread. As  gets larger,
the distribution becomes tighter. So, we might want to think of the conditional distribution in
terms of ! and . We can convert back to ↵ and � using

↵ = !(� 2) + 1 (8.11)

� = (1� !)(� 2) + 1. (8.12)

We have 0 < ! < 1 and 2 < . A reasonable model would be to take ! = q with some
concentration . This gives an additional hyperparameter, , which describes experiment-to-
experiment variability. We will take P ( | I) / 1/, as we typically do for scale parameters.
Thus, our full posterior is

P (q,,p | r,n, I) / P (r,n | p, I)�1

 
kY

i=1

P (p
i

| q,)
!
, (8.13)

nonzero on 0  q,p  1 and  > 2, where

P (p
i

| q,) = �()

�(q(� 2) + 1)�((1� q)(� 2) + 1)
pq(�2)(1� p)(1�q)(�2). (8.14)

As before, we have a binomial likelihood, where we assume the experiments are independent.

P (r,n | p, I) =
kY

i=1

n
i

!

(n
i

� r
i

)!r
i

!
pri
i

(1� p
i

)ni�ri . (8.15)
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8.4 Implementation

In some cases, we can do some macho integration and work out analytical results for the
posterior of a hierarchical model. This usually involves choosing conjugate priors. Most often,
though, we need to resort to numerical methods. To see the worm reversal problem solved with
a hierarchical model, see the implementation here.

8.5 Generalization

The worm reversal problem is easily generalized. You can imagine having more levels of the
hierarchy. This is just more steps in the chain of dependencies that are factored in the prior.
For general parameters ✓ and hyperparameters �, we have

P (✓,� | D, I) =
P (D | ✓, I)P (✓ | �, I)P (� | I)

P (D | I) (8.16)

for a two-level hierarchical model. As we have seen in the course, the work is all in coming up
with the models for the likelihood P (D | ✓, I) and prior, P (✓ | �, I)P (� | I). For coming up
with the conditional portion of the prior, P (✓ | �, I), we often assume a Gaussian distribution
because this often describes experiment-to-experiment variability. Bayes’s theorem gives you
the posterior, and it is then “just” a matter of computing it of sampling from it.
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