

Jastin S. Bobs

Efocentive

Everteme

- wit. -

等

hovinustic

On 2001-大00.2007 Ontioseves.ivent

,
4 Sivan matr
Traw mis
Winu nite
4 Couthour

n-

C(OpenCV

Useful MCMC packages: OpenBUGS, RJAGS, RStan
Useful plotting packages: ggplot2, shiny
Useful data management packages: dplyr2, tidyr

Useful MCMC packages: OpenBUGS, RJAGS, RStan Useful plotting packages: ggplot2, shiny

Useful data management packages: dplyr2, tidyr

Gy Jython

ilastik

the interactive learning and segmentation toolkit

BE/Bi 103

Data Analysis in the Biological Sciences
Fall term, 2015

The scientific method

Statistical inference requires a probability theory

M_{i} : model i
a_{i} : the set of parameters associated with model i
D : the measured data
I: all other knowledge

Bayes's theorem for parameter estimation:

$$
\text { posterior }=P\left(\mathrm{a}_{i} \mid D, M_{i}, I\right)=\frac{P\left(D \mid \mathrm{a}_{i}, M_{i}, I\right) P\left(\mathrm{a}_{i} \mid M_{i}, I\right)}{P\left(D \mid M_{i}, I\right)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

Normalization of posterior (marginalization):

$$
P\left(D \mid M_{i}, I\right)=\int \mathrm{d} \mathbf{a} P\left(D \mid \mathbf{a}_{i}, M_{i}, I\right) P\left(\mathbf{a}_{i} \mid M_{i}, I\right)
$$

Bayes's theorem for model selection:

$$
P\left(M_{i} \mid D, I\right)=\frac{P\left(D \mid M_{i}, I\right) P\left(M_{i} \mid I\right)}{P(D \mid I)}
$$

Model type 1: Cartoons (informal)

Model a:

Model b:

Model type 2: Mathematized cartoons (formal)

Model a:

$$
\begin{aligned}
& l \neq l(d) \\
& l=\theta
\end{aligned}
$$

Model b:

$$
l(d ; \gamma, \theta)=\frac{\gamma d}{\left(1+(\gamma d / \theta)^{3}\right)^{\frac{1}{3}}}
$$

Model type 2: Mathematized cartoons (formal)

Model type 3: Model type 2 + data description

Model a:

$l_{i}=\theta+e_{i}$
e_{i} Gaussian distributed

Model b:

$$
l_{i}=\frac{\gamma d_{i}}{\left(1+\left(\gamma d_{i} / \theta\right)^{3}\right)^{\frac{1}{3}}}+e_{i}
$$

e_{i} Gaussian distributed

Models (definition 3!)

M_{i} and I encode the functional form of the likelihood $P\left(D \mid \mathrm{a}_{i}, M_{i}, I\right)$ and prior $P\left(\mathbf{a}_{i} \mid M_{i}, I\right)$.

Prior $P\left(\mathrm{a}_{i} \mid M_{i}, I\right)$: Often chosen to be uninformative, e.g., uniform or Jeffreys.
Likelihood $P\left(D \mid \mathrm{a}_{i}, M_{i}, I\right)$: Depends on model, often independent Gaussians.

Given the model and all our previous knowledge, the posterior is completely determined. All of the "work" of inference is computing it!

Computing the posterior: analytical results

Multiple measurements of parameter μ with unknown variance σ^{2}.

$$
\begin{aligned}
P\left(\left\{x_{i}\right\} \mid \mu, \sigma, I\right) & =\prod_{i} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}} \\
P(\mu, \sigma \mid I) & \propto \sigma^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { most probable } \mu=\bar{x} \equiv \frac{1}{n} \sum_{i} x_{i} \\
& \text { most probable } \sigma^{2}=r^{2} \equiv \frac{1}{n} \sum_{i}\left(x_{i}-\bar{x}\right)^{2} \\
& P\left(\mu \mid\left\{x_{i}\right\}, I\right) \approx \frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)} \frac{1}{r}\left(1+\frac{(\bar{x}-\mu)^{2}}{r^{2}}\right)^{-\frac{n}{2}} \quad \text { (Student-t) } \\
& \mu \approx \bar{x} \pm r / \sqrt{n}
\end{aligned}
$$

Computing the posterior: analytical results

Computing the posterior: approximate summary

1. Find most probable parameters \mathbf{a}^{*}.
2. Approximate $P(\mathbf{a} \mid D, I)$ as Gaussian by doing a Taylor expansion of $\ln P(\mathbf{a} \mid D, I)$ about a^{*}.
3. The covariance matrix is given by the negative inverse of the Hessian of In $P(\mathbf{a} \mid D, I)$.

Obvious assumption: posterior is approximately Gaussian.

Computing the posterior: approximate summary

Computing the posterior: MCMC

1. Define the (log) posterior distribution.
2. Efficiently sample the posterior with an ergodic, positively recurrent Markov chain.
3. Posterior is trivially marginalized by considering specific parameters.
4. Bin samples to get histograms describing posterior.

Computing the posterior: MCMC

Foray into frequentism

DID THE SUN JUST EXPLODE?
 (TTS NGHT, SO WERE NOT SURE.)

FREQUENTIST STATISTCIAN:

BAYESIAN STATSTICAN:

Image segmentation

Image segmentation

Colocalization

