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6 Frequentist methods

We have taken a Bayesian approach to data analysis in this class. So far, the main motivation
for doing so is that I think the approach is more intuitive. We often think of probability as
a measure of plausibility, so a Bayesian approach jibes with our natural mode of thinking.
Further, the mathematical and statistical models are explicit, as is all knowledge we have prior
to data acquisition. The Bayesian approach, in my opinion, therefore reflects intuition and is
therefore more digestible and easier to interpret.

Nonetheless, frequentist methods are in wide use in the biological sciences. They are not
more or less valid than Bayesian methods, but, as I said, can be a bit harder to interpret.
Importantly, as we will soon see, they can very very useful, and easily implemented, in non-
parametric inference, which is statistical inference where no model is assumed; conclusions
are drawn from the data alone. In fact, most of our use of frequentist statistics will be in the
nonparametric context. But first, we will discuss some parametric estimators from frequentist
statistics.

6.1 The frequentist interpretation of probability

In the tutorials this week, we will do parameter estimation and hypothesis testing using the
frequentist definition of probability. As a reminder, in the frequentist definition of probability,
the probability P(A) represents a long-run frequency over a large number of identical repeti-
tions of an experiment. Much like our strategies thus far in the class have been to start by
writing Bayes’s theorem, for our frequentist studies, we will directly apply this definition of
probability again and again, using our computers to “repeat” experiments many time and tally
the frequencies of what we see.

For me, the approach we will take was heavily inspired by Allen Downey’s wonderful book,
Think Stats and from Larry Wasserman’s All of Statistics. You may also want to watch this
great 25-minute talk by Jake VanderPlas, where he discusses the di↵erences between Bayesian
and frequentist approaches.

6.2 The plug-in principle

In Bayesian inference, we tried to find the most probable value of a parameter. That is, we
tried to find the parameter values at the MAP, or maximum a posteriori probability. We
then characterized the posterior distribution to get a credible region for the parameter we
were estimating. We will discuss the frequentist analog to the credible region, the confidence
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interval in a moment. For now, let’s think about how to get an estimate for a parameter value,
given the data.

While what we are about to do is general, for now it is useful to have in your mind a
concrete example. Imagine we have a data set that is a set of repeated measurements, such as
the repeated measurements of the Dorsal gradient width we studied from the Stathopoulos lab.
We have a model in mind: the data are generated from a Gaussian distribution. This means
there are two parameters to estimate, the mean µ and the variance �.

To set up how we will estimate these parameters directly from data, we need to make some
definitions first. Let F (x) be the cumulative distribution function (CDF) for the distribution.
Remember that the probability density function (PDF), f(x), is related to the CDF by

f(x) =
dF

dx
. (6.1)

For a Gaussian distribution,

f(x) =
1p
2⇡�2

e�(x�µ)

2
/2�

2
, (6.2)

which defines our two parameters µ and �.

A statistical functional is a functional of the CDF, T (F ). A parameter ✓ of a probability
distribution can be defined from a functional, ✓ = T (F ). For example, the mean, variance, and
median are all statistical functionals.

µ =

Z 1

�1
dx xf(x) =

Z 1

�1
dF (x) x, (6.3)

�2 =

Z 1

�1
dx (x� µ)2f(x) =

Z 1

�1
dF (x) (x� µ)2, (6.4)

median = F�1(1/2). (6.5)

Now, say we made a set of n measurements, {x
1

, x
2

, . . . x
n

}. You can this of this as a set of
Dorsal gradient widths if you want to have an example in your mind. We define the empirical
cumulative distribution function, F̂ (x) from our data as

F̂ (x) =
1

n

nX

i=1

I(x
i

 x), (6.6)

with

I(x
i

 x) =

(
1 x

i

 x

0 x
i

> x.
(6.7)
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We saw this functional form of the ECDF in our first homework. We can then also define an
empirical distribution function, f̂(x) as

f̂(x) =
1

n

nX

i=1

�(x� x
i

), (6.8)

where �(x) is the Dirac delta function. To get this, we essentially just took the derivative of
the ECDF.

So, we have now defined an empirical distribution that is dependent only on the data. We
now define a plug-in estimate of a parameter ✓ as

✓̂ = T (F̂ ). (6.9)

In other words, to get a plug-in estimate a parameter ✓, we need only to compute the functional
using the empirical distribution. That is, we simply “plug in” the empirical CDF for the actual
CDF.

The plug-in estimate for the median is easy to calculate.

\median = F̂�1(1/2), (6.10)

or the middle-ranked data point. The plug-in estimate for the mean or variance, seem at face
to be a bit more di�cult to calculate, but the following general theorem will help. Consider a
functional of the form of an expectation value, r(x).

Z
dF̂ (x) r(x) =

Z
dx r(x)f̂(x) =

Z
dx r(x)

"
1

n

nX

i=1

�(x� x
i

)

#

=
1

n

nX

i=1

Z
dx r(x)�(x� x

i

) =
1

n

nX

i=1

r(x
i

). (6.11)

This means that the plug-in estimate for an expectation value of a distribution is the mean
of the observed values themselves. Note that this is the form of the functionals that gives the
mean and variance, so the plug-in estimate of the mean, which has r(x) = x, is

µ̂ =
1

n

nX

i=1

x
i

⌘ x̄, (6.12)

where we have defined x̄ as the traditional sample mean, which we have just shown in the
plug-in estimate. This plug-in estimate is implemented in the np.mean() function. The plug-in
estimate for the variance is

�̂2 =
1

n

nX

i=1

(x
i

� x̄)2 =
1

n

nX

i=1

x2

i

� x̄2. (6.13)
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This plug-in estimate is implemented in the np.var() function.

We can compute plug-in estimates for more complicated parameters as well. For example,
for a bivariate distribution, the correlation between the two variables, x and y, is defined with

r(x) =
(x� µ

x

)(y � µ
y

)

�
x

�
y

, (6.14)

and the plug-in estimate is

⇢̂ =

P
i

(x
i

� x̄)(y
i

� ȳ)p
(
P

i

(x
i

� x̄)2) (
P

i

(y
i

� ȳ)2)
. (6.15)

6.3 Bias

The bias of an estimate is the di↵erence between the expectation value of the estimate and
value of the parameter.

bias
F

(✓̂, ✓) = h✓̂i � ✓ =

Z
dx ✓̂f(x)� T (F ). (6.16)

We often want a small bias because we want to choose estimates that give us back the parameters
we expect.

Let’s consider a Gaussian distribution. Our plug-in estimate for the mean is

µ̂ = x̄. (6.17)

In order to compute the the expectation value of µ̂ for a Gaussian distribution, it is useful to
know that

hxi =
Z 1

�1
dx x e�(x�µ)

2
/2�

2
= µ. (6.18)

Then, we have

hµ̂i = hx̄i = 1

n

*
X

i

x
i

+
=

1

n

X

i

hx
i

i = hxi = µ, (6.19)

so the bias in the plug-in estimate for the mean is zero. It is said to be unbiased.

To compute the bias of the plug-in estimate for the variance, it is useful to know that

hx2i =
Z 1

�1
dx x2 e�(x�µ)

2
/2�

2
= �2 + µ2, (6.20)
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so

�2 = hx2i � hxi2. (6.21)

So, the expectation value of the plug-in estimate is

⌦
�̂2

↵
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i
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+
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⌦
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↵
�
⌦
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↵
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x̄2

↵
. (6.22)

We now need to compute hx̄2i, which is a little trickier. We will use the fact that the measure-
ments are independent, so hx
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x
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Thus, we have

⌦
�̂2

↵
=

✓
1� 1

n

◆
�2. (6.24)

Therefore, the bias is

bias = ��2

n
(6.25)

An unbiased estimator would instead be

n

n� 1
�̂2 =

1

n� 1

nX

i=1

(x
i

� x̄)2. (6.26)

Note that in the none of the above analysis depended on F (x) being the CDF of a Gaussian
distribution. For any distribution, we define the property of the distribution known as the
mean as hxi and that known as the variance as hx2i � hxi2.
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Comparison to Bayesian treatment. To compare this parameter estimate to a Bayesian
treatment, we will consider a Gaussian likelihood in a Je↵reys prior on �. Recalling Lecture 2,
we found that in this case we got x̄ as our most probable value of µ, meaning this is the value
of µ at the MAP. The most probable value of �2 was �̂2. But wait a minute! We just found
that was a biased estimator. What gives?

The answer is that we are considering the *maximally probable* values and not the ex-
pectation value of the posterior. Recall that the posterior for estimating the parameters of a
Gaussian distribution is

P (µ, � | {x
i

} , I) / e�n�̂

2
/2�

2

�n+1

exp


n(µ� x̄)2

2�2

�
. (6.27)

After some gnarly integration to compute the normalization constant and the expectation values
of µ and �2 from this posterior, we get

hµi = x̄ (6.28)

h�2i = n

n� 1
ŝ2, (6.29)

the same as the unbiased frequentist estimators. Note that h�2i 6= h�i2. Remember, in frequen-
tist statistics, we are not computing a posterior distribution describing the parameters. There is
no such thing as the “probability of a parameter value” in frequentist probability. A parameter
has a value, and that’s that. We report a frequentist estimate for the parameter value based on
the expectation values of the assumed underlying distribution. We just showed that, at least
for a Gaussian, the expectation value of the posterior gives the unbiased frequentist estimate
and the MAP gives the plug-in estimate.

Justification of using plug-in estimates. Despite the apparent bias in the plug-in estimate
for the variance, we will normally just use plug-in estimates going forward. (We will use the
hat, e.g., ✓̂ to denote an estimate, which can be either a plug-in estimate or not.) Note that
the bootstrap procedures we lay out in what follows do not need to use plug-in estimates, but
we will use them for convenience. Why do this? First, the bias is typically small. We just saw
that the biased and unbiased estimators of the variance di↵er by a factor of n/(n � 1), which
is negligible for large n. In fact, plug-in estimates tend to have much smaller error than the
confidence intervals for the parameter estimate, which we will discuss in a moment. Finally, we
saw when connecting to the Bayesian estimates that the expectation value is not necessarily
always what we want to describe; sometimes the MAP is preferred. In this sense, attempting
to minimized bias is somewhat arbitrary.

38

http://bebi103.caltech.edu/2016/lecture_notes/l02_parameter_estimation.pdf


6.4 Bootstrap confidence intervals

The frequentist analog to a Bayesian credible region is a confidence interval. Remember, with
the frequentist interpretation of probability, we cannot assign a probability to a parameter value.
A parameter has one value, and that’s that. We can only describe the long-term frequency of
observing results about random variables. So, we can define a 95% confidence interval as
follows.

If an experiment is repeated over and over again, the estimate I compute for a
parameter, ✓̂, will lie between the bounds of the 95% confidence interval for 95% of
the experiments.

While this is a correct definition of a confidence interval, some statisticians prefer another.
To quote Larry Wasserman,

[The above definition] is correct but useless since we rarely repeat the same experi-
ment over and over. A better interpretation is this: On day 1, you collect data and
construct a 95 percent confidence interval for a parameter ✓

1

. On day 2, you collect
new data and construct a 95 percent confidence interval for an unrelated parameter
✓
2

. On day 3, you collect new data and construct a 95 percent confidence interval
for an unrelated parameter ✓

3

. You continue this way constructing confidence in-
tervals for a sequence of unrelated parameters ✓

1

, ✓
2

, . . .. Then 95 percent of your
intervals will trap the true parameter value. There us no need to introduce the idea
of repeating the same experiment over and over.

In other words, the confidence interval describes the construction of the confidence interval
itself. 95% of the time, it will contain the true (unknown) parameter value. Wasserman’s
description contains a reference to the true parameter value, so if you are going to talk about
the true parameter value, his description is useful. However, the first definition of the confidence
interval is quite useful if you want to think about how repeated experiments will end up.

We will use the first definition in thinking about how to construct a confidence interval.
To construct the confidence interval, then, we will repeat the experiment over and over again,
each time computing ✓̂. We will then generate an ECDF of our ✓̂ values, and report the 2.5th
and 97.5th percentile to get our 95% confidence interval. But wait, how will we repeat the
experiment so many times?

Remember that the data come from a probability distribution with CDF F (x). Doing an
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experiment where we make n measurements amounts to drawing n numbers out of F (x)15.
So, we could draw out of F (x) over and over again. The problem is, we do now know what
F (x) is. However, we do have an empirical estimate for F (x), names F̂ (x). So, we could draw
n samples out of F̂ (x), compute ✓̂ from these samples, and repeat. This procedure is called
bootstrapping.

To get the terminology down, a bootstrap sample, x⇤ is a set of n x values drawn from
F̂ (x). A bootstrap replicate is the estimate ✓̂⇤ obtained from the bootstrap sample x⇤. To
generate a bootstrap sample, consider an array of measured values x. We draw n values out of
this array, with replacement. This is equivalent to sampling out of F̂ (x).

So, the recipe for generating a bootstrap confidence interval is as follows.

1) Generate B independent bootstrap samples. Each one is generated by drawing n values
out of the data array with replacement.

2) Compute ✓̂ for each bootstrap sample to get the bootstrap replicates.

3) The 100(1�↵) percent confidence interval consists of the percentiles 100↵/2 and 100(1�
↵/2) of the bootstrap replicates.

This procedure works for any estimate ✓̂, be it the mean, median, variance, skewness, kurto-
sis, or any other esoteric thing you can think of. Note that we use the empirical distribution, so
there is never any assumption of an underlying distribution. Thus, we are doing nonparamet-
ric inference on what we would expect for parameters coming out of unknown distributions;
we only know the data. We will not discuss Bayesian nonparameterics, but they are gener-
ally not nearly as straightforward. In this way, frequentist procedures are often useful in the
nonparametric context.

There are plenty of subtleties and improvements to this procedure, but this is most of the
story. We will discuss bootstrap confidence intervals for regression parameters in the tutorial,
but we have already covered the main idea.

6.5 Hypothesis tests

The frequentist analog to model selection are hypothesis tests. But we should be careful, it
is an analog, but most definitety not the same thing. It is important to note that frequentist

15We’re being loose with language here. We’re drawing out of the distribution that has CDF F (x), but we’re
saying “draw out of F” for short.
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hypothesis testing is di↵erent from Bayesian model selection, in that in the frequentist hypoth-
esis tests, we will only consider how probable it is to get the observed data under a specific
hypothesis, often called the null hypothesis. It is just a name for the hypothesis you are
testing. We will not assess other hypotheses or compare them. Remember that the probability
of a hypothesis being true is not something that makes any sense to a frequentist.

A frequentist hypothesis test consists of these steps.

1) Clearly state the null hypothesis.

2) Define a test statistic, a scalar value that you can compute from data. Compute it
directly from your measured data.

3) Simulate data acquisition for the scenario where the null hypothesis is true. Do this many
times, computing and storing the value of the test statistic each time.

4) The fraction of simulations for which the test statistic is at least as extreme as the test
statistic computed from the measured data is called the p-value, which is what you
report.

We need to be clear on our definition here. The p-value is the probability of observing a test
statistic being at least as extreme as what was measured if the null hypothesis is true. It is
exactly that, and nothing else. It is not the probability that the null hypothesis is true.

Importantly, a hypothesis test is defined by the null hypothesis, the test statistic,
and what it means to be at least as extreme. That uniquely defines the hypothesis test
you are doing. All of the named hypothesis tests, like the Student-t test, the Mann-Whitney
U-test, Welch’s test, etc., describe a specific hypothesis with a specific test statistic, with a
specific definition of what it means to be at least as extreme (one-tailed or two-tailed). I can
never remember what these are, nor do I encourage you to; you can always look them up.
Rather, you should just clearly write out what your test is in terms of the hypothesis, test
statistic, and definition of extreme.

Now, the real trick to doing a hypothesis test is step 3, in which you simulate the data
acquisition assuming the null hypothesis was true. I will demonstrate two hypothesis tests and
how we can simulate them. For both examples, we will consider the commonly encountered
problem of performing the same measurements under two di↵erent conditions, control and test.
You might have the example of Dorsal gradient widths for wild type Dorsal versus those of the
Dorsal-Venus construct.

Test and control come from the same distribution. Here, the null hypothesis is that
the distribution F of the control measurements is the same as that G of the test, or F = G. To

41



simulate this, we can do a permutation test. Say we have n measurements from control and
m measurements from test. We then concatenate arrays of the control and test measurements
to get a single array with n +m entries. We then randomly scramble the order of the entries
(this is implemented in np.random.permuation()). We take the first n to be labeled “control”
and the last m to be labeled “test.” In this way, we are simulating the null hypothesis: whether
or not a sample is test or control makes no di↵erence.

For this case, we might define our test statistic to be di↵erence of means, or di↵erence of
medians. These can be computed from the two data sets and are a scalar value.

Test and control have the same mean. The null hypothesis here is exactly as I have
stated, and nothing more. To simulate this, we shift the data sets so that they have the same
mean. In other words, if the control data are x and the test data are y, then we define the
mean of all measurements to be

z̄ =
nx̄+mȳ

n+m
. (6.30)

Then, we define

x
shift,i

= x
i

� x̄+ z̄, (6.31)

y
shift,i

= y
i

� ȳ + z̄. (6.32)

(6.33)

Now, the data sets x
shift

and y
shift

have the same mean, but everything else about them is the
same as x and y, respectively.

To simulate the null hypothesis, then, we draw bootstrap samples from x
shift

and y
shift

and
compute the test statistic from the bootstrap samples, over and over again.

In both of these cases, no assumptions were made about the underlying distributions. Only
the empirical distributions were used; these are nonparametric hypothesis tests.

6.5.1 Interpretation of the p-value

If the p-value is small, the e↵ect is said to be statistically significant. But what is small? I
generally strongly discourage a bright line p-value used to deem a result statistically significant
or not. You computed the p-value, it has a specific meaning; you should report it. I do not see
a need to convert a computed value, the p-value, into a Boolean, True/False on whether or not
we attach the word “significant” to the result.
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The question the p-value addresses is rarely the question we want to ask. For example, say
we are doing a test of the null hypothesis that two sets of measurements have the same mean.
In most cases, which of the following questions are we interested in asking:

1) How di↵erent is the means of the two samples?

2) Would we say there is a statistically significant di↵erence of the means of the two samples?
Or, more precisely, what is the probability of observing a di↵erence in means of the two
samples at least as large as the the observed di↵erence in means, if the two samples in
fact have the same mean?

The second question is convoluted and often of little scientific interest. I would say that the first
question is much more relevant. To put it in perspective, say we made trillions of measurements
of two di↵erence samples and their mean di↵ers by one part per million. This di↵erence, though
tiny, would still give a low p-value, and therefore often be deemed “statistically significant.”
But, ultimately, is the size of the di↵erence, or the e↵ect size we care about.

6.5.2 What is with all those names?

You have no doubt of many named frequentist hypothesis tests, like the Student-t test, Welch’s
t-test, the Mann-Whitney U-test, and countless others. What is with all of those names? It
helps to think more generally about how frequentist hypothesis testing is usually done.

To do a frequentist hypothesis test, people unfortunately do not do what I laid out above, but
typically follow the following prescription (borrowing heavily from the treatment in Gregory’s
excellent book).

1) Choose a null hypothesis. This is the hypothesis you want to test the truth of.

2) Choose a suitable test statistic that can be computed from measurements and has a
predictable distribution. For this example, we can choose as our statistic

T =
x̄
1

� x̄
2

� (µ
1

� µ
2

)

S
D

p
n�1

1

+ n�1

2

,

where S2

D

=
(n

1

� 1)S2

1

+ (n
2

� 1)S2

2

n
1

+ n
2

� 2
,

with S2

1

=
1

n
1

� 1

X

i2D1

(x
i

� x̄
1

)2, (6.34)
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and S2

2

similarly defined. The T statistic is the di↵erence of the di↵erence of the observed
means and the di↵erence of the true means, weighted by the spread in the data. This
is a reasonable statistic for determining something about means from data. This is the
appropriate statistic when �

1

and �
2

are both unknown but assumed to be equal. (When
they are assumed to be unequal, you need to adjust the statistic you use. This test is
called Welch’s t-test.) It can be derived that this statistic has the Student-t distribution,

P (t) =
1p
⇡⌫

�
�
⌫+1

2

�

�
�
⌫

2

�
✓
1 +

✓
t2

⌫

◆◆� ⌫+1
2

, (6.35)

where ⌫ = n
1

+ n
2

� 2. (6.36)

3) Evaluate the statistic from measured data. In the case of the Student-t test, we compute
T .

4) Plot P (t). The area under the curve where t > T is the p-value, the probability that we
would observe our data under the null hypothesis. Reject the null hypothesis if this is
small.

As you can see from the above prescription, item 2 can be tricky. Coming up with test statistics
that also have a distribution that we can write down is di�cult. When such a test statistic
is found, the test usually gets a name. The main reason for doing things this way is that
most hypothesis tests were developed before computers, so we couldn’t just bootstrap our way
through hypothesis tests. (The bootstrap was invented by Brad Efron in 1979.) Conversely, in
the approach we have taken, sometimes referred to as “hacker stats,” we can invent any test
statistic we want, and we can test is by numerically “repeating” the experiment, in accordance
with the frequentist interpretation of probability.

So, I would encourage you not to get caught up in names. If someone reports a p-value
with a name, simply look up what hypothesis and test statistic they are using, and that will
give you an understanding of what is going on with the test.

That said, many of the tests with names have analytical forms and can be rapidly computed.
Most are included in the scipy.stats module. I have chosen to present a method of hypothesis
testing that is intuitive with the frequentist interpretation of probability front and center. It
also allows you to design your own tests that fit a null hypothesis that you are interested in
that might not be “o↵-the-shelf.”

6.5.3 Warnings about hypothesis tests

There are many.
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1) An e↵ect being statistically significant does not mean the e↵ect is significant in practice
or even important. It only means exactly what it is defined to mean: an e↵ect is unlikely
to have happened by chance under the null hypothesis. Far more important is the e↵ect
size.

2) The p-value is not the probability that the null hypothesis is true. It is the probability
of observing the test statistic being at least as extreme as what was measured if the null
hypothesis is true. I.e., if H

0

is the null hypothesis,

p-value = P (test stat at least as extreme as observed | H
0

). (6.37)

It is not the probability that the null hypothesis is true given that the test statistic was
at least as extreme as the data.

p-value 6= P (H
0

| test stat at least as extreme as observed). (6.38)

We actually want the probability that the null hypothesis is true, and the p-value is often
erroneously interpreted as this to great peril.

3) Null hypothesis significance testing does not say anything about alternative hypotheses.
Rejection of the null hypothesis does not mean acceptance of any other hypotheses.

4) P-values are not very reproducible, as we will see in the tutorials when we do “dance of
the p-values.”

5) Rejecting a null hypothesis is also kind of odd, considering you computed

P (test stat at least as extreme as observed | H
0

). (6.39)

This does not really describe the probability that the hypothesis is true. This, along with
point 4, means that the p-value better really low for you to reject the null hypothesis.

6) Throughout the literature, you will see null hypothesis testing when the null hypothesis
is not relevant at all. People compute p-values because that’s what they are supposed to
do. The Dorsal gradient might be an example: of course the gradients will be di↵erent;
we have made a big perturbation. Again, it gets to the point that e↵ect size is waaaaay
more important that a null hypothesis significance test.

Given all these problems with p-values, I generally advocate for their abandonment. They
seldom answer the question scientists are asking and lead to great confusion.
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